The Exact Distribution of the Number of Vertices of a Random Convex Chain

نویسندگان

  • Christian Buchta
  • Rolf Schneider
چکیده

Assume that n points P1, . . . , Pn are distributed independently and uniformly in the triangle with vertices (0, 1), (0, 0), and (1, 0). Consider the convex hull of (0, 1), P1, . . . , Pn, and (1, 0). The vertices of the convex hull form a convex chain. Let p (n) k be the probability that the convex chain consists — apart from the points (0, 1) and (1, 0) — of exactly k of the points P1, . . . , Pn. Bárány, Rote, Steiger, and Zhang [3] proved that p (n) n = 2/[n!(n+1)!]. We determine for k = 1, . . . , n−1 the values of p (n) k and thus obtain the distribution of the number of vertices of a random convex chain. Knowing this distribution provides the key to the answer of some long-standing questions in geometrical probability. Mathematics Subject Classification (2000) 52A22 60D05

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Risk of Sequential Estimator of the Failure Rate of Exponential Distribution under Convex Boundary

In this paper the exact determination of the distribution of stopping variable, the moment and risk of sequential estimator of the failure rate of exponential distribution, under convex boundary is obtained. The corresponding Poisson Process is used to derive the exact distribution of stopping variable of sequential estimator of the failure rate. In the end the exact values of mean and risk ...

متن کامل

A Hard Convex Core Yukawa Equation of State for Nonassociated Chain Molecules

The compressibility factor of nonassociated chain molecules composed of hard convex core Yukawa segments was derived with SAFT-VR and an extension of the Barker-Henderson perturbation theory for convex bodies. The temperature-dependent chain and dispersion compressibility factors were derived using the Yukawa potential. The effects of temperature, packing fraction, and segment number on the com...

متن کامل

Hosoya polynomials of random benzenoid chains

Let $G$ be a molecular graph with vertex set $V(G)$, $d_G(u, v)$ the topological distance between vertices $u$ and $v$ in $G$. The Hosoya polynomial $H(G, x)$ of $G$ is a polynomial $sumlimits_{{u, v}subseteq V(G)}x^{d_G(u, v)}$ in variable $x$. In this paper, we obtain an explicit analytical expression for the expected value of the Hosoya polynomial of a random benzenoid chain with $n$ hexagon...

متن کامل

A stochastic version analysis of an M/G/1 retrial queue with Bernoulli‎ ‎schedule‎

‎In this work‎, ‎we derive insensitive bounds for various performance measures of a single-server‎ ‎retrial queue with generally distributed inter-retrial times and Bernoulli schedule‎, ‎under the special‎ ‎assumption that only the customer at the head of the orbit queue (i.e.‎, ‎a‎ ‎FCFS discipline governing the flow from the orbit to the server) is allowed‎ ‎to occupy the server‎. ‎The method...

متن کامل

Wiener numbers of random pentagonal chains

The Wiener index is the sum of distances between all pairs of vertices in a connected graph. In this paper, explicit expressions for the expected value of the Wiener index of three types of random pentagonal chains (cf. Figure 1) are obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006